BuDDI: Bug Detection, Debugging, and Isolation
Middlebox for Software-Defined Network
Controllers

Rohit Abhishek!, Shuai Zhao!, Sejun Song!, Baek-Young Choi', Henry Zhu?, Deep Medhi'
LUniversity of Missouri-Kansas City, >Cisco Systems
{rabhishek, shuai.zhao, songsej, choiby, dmedhi) @umkc.edu, hezhu@cisco.com

Abstract—Despite tremendous software quality assurance ef-
forts made by network vendors, chastising software bugs is a
difficult problem especially, for the network systems in operation.
Recent trends towards softwarization and opensourcing of net-
work functions, protocols, controls, and applications tend to cause
more software bug problems and pose many critical challenges
to handle them. Although many traditional redundancy recovery
mechanisms are adopted to the softwarized systems, software
bugs cannot be resolved with them due to unexpected failure
behavior. Furthermore, they are often bounded by common mode
failure and common dependencies (CMFD). In this paper, we
propose an online software bug detection, debugging, and iso-
lation (BuDDI) middlebox architecture for software-defined net-
work controllers. The BuDDI architecture consists of a shadow-
controller based online debugging facility and a CMFD mitigation
module in support of a seamless heterogeneous controller failover.
Our proof-of-concept implementation of BuDDI is on the top
of OpenVirtex by using Ryu and Pox controllers and verifies
that the heterogeneous controller switchover does not cause any
additional performance overhead.

I. INTRODUCTION

Software faults in the operating network systems can cause
not only critical system failures [S]] but also various unexpected
and transient results. Although network vendors have a series
of development guidelines, check-pointing facilities, assurance
processes, and debugging mechanisms to improve their soft-
ware reliability, it is commonly accepted that maintaining a
bug free network system is impossible. The recent networking
paradigm changes towards softwarization and virtualization
has increased the detrimental effect of software faults on
network functions, protocols, controls, and applications. Fur-
thermore, the increasing open-source and third-party software
(TPS) used in Software-Defined Networks (SDN) aggravates
software bug problems because vendors may not fully iden-
tify all issues during software quality assurance testing. To
cope with the software reliability issues, a few software bug
handling mechanisms have been proposed. For example, the
bug tolerant router design has been proposed in [S[, [8]
to run multiple diverse copies of virtual router instances.
LegoSDN to tolerate SDN application failure [6]], [8]] focuses
on SDN-App failures, fail-stop crashes and byzantine failures.
However, software bugs are hard to be resolved with the
traditional redundancy-based failure detection and recovery

Switchover to Standby Active (converged)
Heterogeneous Controller Controller
At " Type Controller
ctive .- e

\
Preemption/Conﬁr'rn ion OR
Shadow !

-

-

e

Enable Debu&bfﬁg*
Shadow

Fig. 1. BuDDI N + 2 Reliability

mechanisms alone as software bugs can cause unexpected root
cause failures, baffle failure detections, and hinder recovery
mechanisms. In addition, some of the deterministic bugs in
SDN controllers are often bound by common mode failure
and dependencies (CMFD) that bring the system into the
same software failures after a fail over. On-line debugging,
and especially CMFD resolutions in SDN are still a relatively
unexplored area. In this paper, we propose an online software
Bug Detection, Debugging, and Isolation (BuDDI) middlebox
architecture for SDN controllers. BuDDI consists of a shadow-
controller based online debugging facility and a CMFD mitiga-
tion module in support of a seamless heterogeneous controller
failover. For on-line bug detection and debugging, unlike a
traditional N + 1 redundancy cluster system, we propose an
N + 2 load balancing cluster system where components (V)
have at least two independent failover components (+2). As
illustrated in Figure [T, BuDDI facilitates a CMFD mitigation
module by taking advantage of software diversity of the
existing heterogeneous controllers. In addition, BuDDI enables
a shadow controller that mirrors the active controller functions
and turns on a verbose debugging mode for a specific failure
module. Eventually, the two failover components will converge
into one active controller. If the shadow-controller cannot

identify a software bug in a given period, it sends a preemption
message to the active CMFD module to take over the active
role. Otherwise, it will confirm an active role for the CMFD
module.

Controller switchover algorithms and shadow controllers
debugging facilities are built on the top of OpenVirtex, which
provides the facility to create virtual networks and to map them
to the physical network. The middlebox acts as proxy between
the physical network and the controllers. As a preliminary
part of our experiment, we choose two of the heterogeneous
controllers (Ryu [2] and Pox [1]]) to verify that both the
heterogeneous controller switchover and N + 2 redundancy
mechanism supports do not cause any additional performance
overhead in the proposed BuDDI mechanism.

The rest of the paper is organized as follows: Section
describes the related work. In Section we review the pro-
posed architecture. We then present the experimental results
in Section [IV] Finally, we conclude in section [V] and describe
our future work.

II. RELATED WORK

Bug tolerance has been studied with respect to router
software. Bug tolerant router design has been proposed in [5]],
[8]]. The idea is to run multiple diverse copies of virtual router
instances in parallel. Each of the running router instances
running differs from the other, which reduces the possibility
of simultaneous failures. These works address the traditional
IP networks whereas in our work, we focus on SDN networks.

LegoSDN to tolerate SDN application failure [6], [8] fo-
cuses on SDN-App failures, fail-stop crashes, and byzantine
failures, and not on controller failures. Here, a re-design of
controller architecture has been presented that provides the
features to (1) isolate the SDN-Apps from the controller
and (2) isolate the SDN-Apps from the network, making the
controllers and the network resilient to SDN-App failures. In
our work, we focus on controller failure and isolation.

CoVisor [7]], a network hypervisor, enables deployment of
multiple control applications in a single network, operating
on different controller platform, allowing administrators to
combine multiple controllers to collaboratively process net-
work traffic. Here, different applications running on multiple
controllers are combined to produce a single flow table for
each physical switch, and at the same time, the controller’s
view of topology is also restricted.

Our architecture is built on top of OpenVirtex (OVX).
OVX helps to provide address virtualization to keep tenant
traffic separate, enabling topology virtualization. OpenVirteX
has the facility to create multiple virtual networks. Although
OpenVirtex provides the capability to build a virtual network,
which points towards the controller, it does not have any
logic for fault tolerance or bug detection. Moreover, if the
controller fails, the entire network is disconnected as there is
no flexibility to change the controller. We address these issues
in our proposed architecture.

TABLE I
SWITCHOVER MODE DEFINITION

Definition

Explanation ‘

Controller to which the network

is connected

Controller to which switchover takes
place after bug is detected in the
active controller

Controller used for debugging.
Copy of the active controller
Different types of controllers.
E.g..,Pox + Ryu

Same types of controllers.

E.g., Pox + Pox.

Time between bug detection

and connection to standby controller

Active Controller

Standby Controller

Shadow Controller

Heterogenous Controllers

Homogenous Controllers

Switchover time

ITII. BuDDI

Our proposed architecture aims at bug detection, debugging
and isolation (BuDDI) for SDN controllers. BuDDI is built
on top of OpenVirteX, which is a network virtualization
platform that enables operators to create and manage vSDNs
[4]. BuDDI provides three main functionalities: (i) detection
of any bug in the controller (ii) automatic debugging of
the controller for bugs (iii) isolation by switching over the
controllers. It works with all four main failure scenarios in the
SDN deployment [6]]: (i) controller server failure (hardware
failure); (ii) controller crashes (bug in the controller code);
(iii) network device failures (switch, application server or link
failure); and (iv) SDN application (SDN-App) crashes (bugs
in the application code). Our work focuses on the controller
failures as well as on SDN-App failures. BuDDI is designed in
such a way that whenever there is any failure in the Controller
or the SDN-App crashes, it detects that the connection to the
controller is down, and it switches over the controller. The
same time debugging is also started. Important keywords are
explained in Table [T,

A. Proposed Architecture

The proposed architecture is shown in Figure[2] The middle-
box is connected to the controllers via northbound OpenFlow,
whereas with the physical network, via southbound OpenFlow.

Ryu, POX, FloodLight, Trema, and OpenDaylight are some
of the most commonly used open source controllers [9]. These
controllers vary from each other in one way or another,
which gives them diversity and supports our claim of using
a heterogeneous controller approach. Table [lI| lists the basic
differences between the controllers.

For this architecture there are three controllers used: active,
standby and shadow controllers. The standby controller is a
heterogenous controller, whereas the shadow controller is a
homogenous controller. Failure in the controller can be caused
due to indeterministic bug in the source code or due to a
controller crash. When the active controller is down due to
any bug in the SDN app, or due to any hardware failure in
the controller, BuDDI switches the control from the active

TABLE 11
COMPARISON AMONG CONTROLLERS [9]]

POX Ryu Trema Floodlight OpenDaylight
REST API No Yes(For SB Interface only) No Yes Yes
Language Support ~ Python Python-Specific + Message Passing C/Ruby Java+Any Langugae that uses REST Java
Reference
Platform Support Linux, Mac OS, and Windows Most Supported on Linux Linux Only Linux,Mac and Windows Linux
OpenFlow Support OF v1.0 OF v1.0-v1.3 and Nicira Extension OF v1.0 OF v1.0 OF v1.0-v1.3
o alive messages will not be exchanged and an error message
Shadow Active Standby Applications would be generated.
CONTROLLER CONTROLLER CONTROLLER Isolation Module: This module is responsible for switch-
Type X Type X Type Y Controllers Cluster .
ing over to a heterogenous controller and the homogenous
controller at the same time. The heterogenous controller will
1 Northbound API take over as the active controller where as the homogenous
BuDDI controller will be used for debugging purposes. The main
ERROR SWITCHOVE . . .
DEBUGGING v ion R reason for a switchover to a heterogenous controller (in spite
BUDD!I Middle Box of applications being controller specific) is that if any non
T deterministic software bug is found, it would be affected if we
] Southbound api : : g ’ . !
TR switched over to same type of controller. Since different con-
=/ 1 \ = = trollers are coded in different coding languages, the probability
7 i N\ OpenFlow Switches that we will encounter the same bug in different controllers is
== = less. This module is also responsible for the synchronization
of the flow states.
Fig. 2. BuDDI Middlebox Architecture. Debugging Module: As we know, applications are con-

controller to the standby controller, which is a heterogenous
controller. We use heterogenous controller since different
controllers are coded in different languages and there is less
probability that the same bug would reoccur. At the same time,
the shadow controller, which is homogenous controller, is also
switched over, but is used for debugging the failure. The main
aim of the shadow controller is to find the root cause of the
failure. The shadow controller has the information about the
application state, so if the automated debugging process passes
the state at which the failure occurred in the active controller,
then the shadow controller becomes the new active controller,
or else, the standby controller continues to serve as the new
active controller.

B. Functional Modules

Our architecture can be divided into three different func-
tional modules as shown in Figure (i) Fault Detection
Module (ii) Isolation Module and the (iii) Debugging Module.
Each module described below.

Fault Detection Module: The main function of this module
is to monitor the applications running on the controller. Using
the keep-alive messages exchanged between the datapaths and
controllers, we try to monitor the connection between the
virtual network and the controllers. If any online software
bug causes the application to stop, an error message would
be generated. By using this error message and the event log
on the controllers, we can check which application on the
controller has stopped or has encountered a bug. If there are
any hardware failures or any network device failure, the keep-

troller specific. So it will not be good to use a different
controller for long time. So, we use the same type of controller
as a shadow controller, which would be used in a debugging
mode. An occurrence of a bug in an SDN application will
most likely result in the SDN system being down. In order to
seamlessly switchover and avoid failure, we use the shadow
controller. The main idea is to see if we are getting the same
error again in the shadow controller. If we encounter the same
error in the same point, it would mean that there is a bug and
it would be reported. If we do not encounter the same error in
the shadow controller, it would mean that our active controller
had some other failure and not a bug. The debugging module
aims at detecting liveness bugs.

C. Switchover Procedure

Prior to the network getting connected to the controller, we
need to have a copy of the active controller that would act
as our shadow controller and also as a standby heterogenous
controller. Once the network is operational, it points towards
the middlebox. Inside the middlebox, a virtual topology is cre-
ated. The virtual topology points towards the active controller
and the error detection module is initialized to monitor the
active controller. When any bug arises in the active controller,
an error is generated in the error detection module. Once the
error shows up in the error detection module, a notification is
sent to the Isolation and Debugging module. Now the Isolation
module will switch over the control of the entire network to
the standby controller and transfer the flow states from the
active controller to the standby controller. At the same time,
it also makes a switchover to the shadow controller, which
is an exact copy of the active controller, but this shadow

Shadow Active Standby
Controller " Controller Controller
Type X Type X Type Y

X————— -1
| Fault Detection | Isolation |
Bug Detected in the Active Controller: Switchover
Active Standby
Controller Controller
Type X Type Y

| Isolation |

Bug Detected in the Shadow Controller:
Standby Controller becomes the Active Controller

Shadow Active Standby
" controller Controller
Type X Type Y
= YO X

No Bug Detected in the Shadow Controller:
Shadow Controller becomes the Active Controller

Fig. 3. Shadow Controller Switchover (no bug detected vs bug detected)

controller would be used by the Debugging module to find
the root cause of the bug. If while debugging the shadow
controller, it does not find the same bug, which occurred in
the active controller, it would be mean that there was some
other error that occurred in the active controller, which was
not necessarily a bug. Then the whole network would be
switched over to the shadow controller and it would act as
the active controller. If while debugging the shadow controller,
the debugging module finds the same error that occurred in the
active controller, it would be mean that there is a software bug.
At this point, the standby controller will continue to act as the
controller. Figure [3] demonstrates the switchover procedure.
Introduction of BuDDI adds a latency of 0.2 ms, which is
because our architecture is built on top of OpenVirtex that
adds the delay to the control channel [3]].

IV. IMPLEMENTATION AND PRELIMINARY RESULTS
A. BuDDI Switchover Algorithm

Algorithm [T] shows the proposed BuDDI switchover mech-
anism. It covers how the switchover happens when any bug is
detected and the convergence after the debugging process.

B. Simulation Setup and Results

In our initial experiment, we conducted switchover per-
formance tests between heterogeneous and homogenous con-
trollers by using both Ryu and Pox controllers. Our test
environment is a regular virtual machine with 2 GB RAM
and a Ubuntu 14.04 operating system. We use Mininet
to simulate different network sizes (3, 8, and 11 switches)
with linear topology. Each experiment has ping traffic, and
was conducted 15 times, and the average values were taken.

Figure [compares the switchover time for homogenous
and heterogenous controllers in different simulated network
sizes. Figure[5] presents two switchover time differences: (i) the
switchover time difference between heterogeneous controllers,
Ryu to Pox, and homogenous controllers, Ryu to Ryu (a

Algorithm 1: BUDDI Switchover

Result: Controller Switched Over
Error Detection module starts monitoring the Active
Controller ;

while Bug Detected do
Switchover Module starts switchover to Standby

Controller as the new Active Controller and to
Shadow Controller for automated Debugging;
Transfer buggy state to the shadow controller;
Transfer flow state to the shadow controller;

if Debugging Module finds same error in Shadow

Controller then
Continue using Standby Controller as Active

controller
else

Switchover Module switches over to Shadow
Controller as the new Active Controller;

Transfer the flow state from Standby controller to
Shadow controller

end

end

Switchover Time Difference

=]
1

—

—+RYU-RYU
—+RYU-POX

POX-POX
——-POX-RYU

o> ~

TIME DIFFERENCE(SECONDS)

NETWORK SIZE

-

3 4 5

Fig. 4. Heterogenous vs Homogenous Controllers Switchover Time

red line); and (ii) the switchover time difference between
heterogeneous controllers, Pox to Ryu, and homogenous con-
trollers, Pox to Pox, (a blue line). The graph demonstrates
that there is very little switchover time difference between the
heterogeneous and homogenous controller switchovers for the
example networks we tested.

As we can see from the graph, when the network size in-
creases, the switchover time increases as well. The switchover
time is application specific. The architecture has been tested
with a layer 2 simple switch. Since our test environment is a
regular virtual machine, there is very minimum overhead to run
a shadow controller. The result shows promise that BuDDI can
effectively support a CMFD module switchover with minimal

Switchover Time Difference

-~ (RYU=POX)RYU—RYU

o

We verified that BuDDI supports our claim of a het-

- erogeneous controller switchover without causing additional

|- -(POX=RYU){POXPOX)

& IS iy

T T T \ l T T 2y T

TIME DIFFERENCE(SECONDS)

NETWORK SIZE

Fig. 5.
parison

Heterogenous vs Homogenous Controllers Switchover Time Com-

overhead.

V. CONCLUSION AND FUTURE WORK

We proposed a novel online software bug detection, de-
bugging, and isolation (BuDDI) middlebox architecture for
software-defined network controllers. Unlike the traditional
recovery solutions, the proposed solution facilitates on-line
based quality assurance, prediction, debugging, and, espe-
cially, common cause software failure mode resolutions by
using the existing controllers on the top of the open source
clustering facility, OpenVirtex.

performance overhead. By using the BuDDI algorithms and
protocols in future work, we will further investigate additional
debugging features and design an automated compatibility
matrix over other existing controllers. We also plan to design
a facility to transfer the buggy states and modules instead of
switching over the entire controllers. We will further test our
system by injecting SDN errors both from the software and
network . We will also consider a wide range of applications
and a high load on the network.

REFERENCES
(1]

[2]
[3]

Pox wiki https://openflow.stanford.edu/display/onl/pox+wiki.

Ryu sdn framework https://osrg.github.io/ryu-book/en/ryubook.pdf.

A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow. Openvirtex: Make your virtual sdns
programmable. In Proceedings of the third workshop on Hot topics
in software defined networking, pages 25-30. ACM, 2014.

A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, W. Snow, and
G. Parulkar. Openvirtex: A network hypervisor. In Open Networking
Summit 2014 (ONS 2014), 2014.

M. Caesar and J. Rexford. Building bug-tolerant routers with virtualiza-
tion. In Proceedings of the ACM workshop on Programmable routers
for extensible services of tomorrow, pages 51-56. ACM, 2008.

B. Chandrasekaran and T. Benson. Tolerating sdn application failures
with legosdn. In Proceedings of the 13th ACM Workshop on Hot Topics
in Networks, page 22. ACM, 2014.

X. Jin, J. Gossels, J. Rexford, and D. Walker. Covisor: A compositional
hypervisor for software-defined networks. In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), pages
87-101, 2015.

E. Keller, M. Yu, M. Caesar, and J. Rexford. Virtually eliminating router
bugs. In Proceedings of the 5th international conference on Emerging
networking experiments and technologies, pages 13-24. ACM, 2009.
R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou. Feature-
based comparison and selection of software defined networking (sdn)
controllers.

M. Team. Mininet: An instant virtual network on your laptop (or other
pe), 2012.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

	Introduction
	Related Work
	BuDDI
	Proposed Architecture
	Functional Modules
	Switchover Procedure

	implementation and preliminary results
	BuDDI Switchover Algorithm
	Simulation Setup and Results

	Conclusion and Future Work
	References

